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Abstract In multiphase chemical reactor analysis the dispersed phase distribution
plays a major role in obtaining reliable predictions. The population balance equation is
a well established equation for describing the evolution of the dispersed phase. How-
ever, the numerical solution of this type of equations is computationally intensive. In
this work, a time-property least squares spectral method is presented for solving the
population balance equation including breakage and coalescence processes. In this
problem, both property and time are coupled in the least squares minimization proce-
dure. Spectral convergence of the L2 least squares functional and L2 error norms in
time-property is verified using a smooth solution to the population balance equation.

Keywords Population balance equation · Least squares method

1 Introduction

Population Balance Modeling (PBM) is a well established method for describing the
evolution of populations of entities such as bubbles, droplets or particles. In partic-
ular, in multiphase flow problems the PBM is used to include information about the
dispersed phase distribution into the multifluid model.

Based on the population balance approach the dispersed phase is treated by using a
density function for instance f (r, ξ, t) where r is the spatial vector position, ξ is the
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property of interest of the dispersed phase, and t the time. Thus, this density function
f (r, ξ, t) dξ , can represent the average amount of number of particles per unit volume
around the point r at the instant t with the property between ξ and ξ + dξ . The evolu-
tion of this density function must take into account the different processes that control
the density function such as breakage, coalescence, growth and advective transport of
the particles. The resulting equation is a nonlinear partial integro-differential equation
which requires to be solved by a suitable numerical method.

Several methods have been proposed as reviewed by Ramkrishna [19] and Dorao
and Jakobsen [5]. However, in order to introduce the population balance framework in
computationally demanding environments such as in the simulation of bubble column
reactors, high order methods might be a convenient option. In this respect, it is possi-
ble to find several examples of the application of high order methods for solving the
population balance equation. For instance, Subramain and Ramkrishna [21] presented
a Tau method for solving the distribution of the population of microbial cells that
present growth and breakage processes. Mantzaris et al. [14] discussed the Galerkin,
Tau and pseudo-spectral methods as a tool for solving multi-variable cell population
balance models that present growth and breakage. Chen et al. [2] developed a wave-
let-Galerkin method for solving population balance equations for the treatment of
particle-size distribution in problems of a continuous, mixed-suspension and mixed-
product removal crystallizer with effects of breakage. Liu and Cameron [12] proposed
the use of a wavelet-based method for the treatment of problems involving particle
nucleation, growth and agglomeration.

Recently, Dorao and Jakobsen [5,6] showed the applicability of the least squares
method [1,11,16,17] using Legendre polynomials for the the particle space discreti-
zation and Crank–Nicolson for the time discretization. In particular, the least-squares
finite element method constitutes an alternative to Galerkin and Petrov–Galerkin weak
formulations. The basic idea in the least squares methods is to minimize the integral of
the square of the residual over the computational domain. In the case when the exact
solutions are sufficiently smooth the convergence rate is exponential. The population
balance equation involving the advection operator for one-dimensional steady state
problems were discussed by Dorao and Jakobsen [7] using a nodal approach. For prob-
lems involving spatial dependence Dorao and Jakobsen [8] presented the extension of
the least squares method for including the spatial dependencies into the same mini-
mization framework. For time dependent problems, the space-time formulation, i.e.
time is treated as an additional dimension, allows high order accuracy both in space
and in time [13,18]. In this way, space-time can be solved at once, or per time-step on
a space-time slab in a kind of semi-discrete formulation.

The main goal of this work is to extend the least squares framework for solv-
ing the population balance equation previously developed [5–8] to include the time
variation also in the minimization procedure, i.e. applying the time-property least
squares approach. In this way, a balanced accuracy both in time and in space can be
obtained.

In Sect. 2, the population balance equation is presented. Section 3 presents the
application of the time-property least squares method for solving the population bal-
ance equation. In Sect. 4, some numerical examples are discussed. Finally, Sect. 5
presents the main conclusions of this work.
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2 Population balance equation

The population balance equation can be written as

L f (ξ, t) = g(ξ, t), in � (1)

B0 f (ξ, t) = f0(ξ), on �0 (2)

with � = [ξmin, ξmax] × [0, T ] where ξmin and ξmax are for instance the minimum and
maximum particle size, and T the final simulation time. The right hand side (RHS)
of Eq. 1 is a source or sink term, representing an external mechanics of adding or
removing particles from the system. Equation 2 contains the initial condition f0(ξ)

of the problem which is applied on �0 = {(ξ, t) ∈ ∂� : t = 0} and where B0 the
identity operator, i.e. B0 f (ξ, t) = f (ξ, t).

The operator L is a non-linear first order partial integro-differential operator
defined as

L f (ξ, t) ≡ ∂ f (ξ, t)

∂t
+ LP B f (ξ, t) (3)

where LP B f (ξ, t) is, for this example, a 0th moment conservative population balance
operator,

LP B f (ξ, t) = −b(ξ) f (ξ, t) +
∫ ξmax

ξ

h(ξ, s) b(s) f (s, t)ds

− f (ξ, t)
∫ ξmax +ξmin−ξ

ξmin

c(ξ, s) f (s, t)ds

+
∫ ξ

ξmin

c(ξ − s, s) f (ξ − s, t) f (s, t)ds (4)

The first term on the RHS of Eq. 4 represents the change in the population due to loss
of the individuals in the population for example for a breakage process; thus b(ξ) is
the breakage rate of the particles of type ξ . The second term on the RHS gives us the
change in the population due to the arrivals of new individuals with property ξ . So,
the breakage of particles of type s will produce particles of type ξ according to the
breakage yield function, h(ξ, s). Then, h(ξ, s) satisfies the property that

hk(s) =
∫ ξmax

ξmin

ξ k h(ξ, s) dξ = sk (5)

where hk(s) is the moment of the new particles that appear after the breakage, if k is
the moment that is conserved in the breakage process. For instance, assuming that ξ

represents the volume of the particle: if the sum of the volume of the particles that
appears due to the breakage of a particle with volume s is conserved, then we have
that k = 1, i.e. the 1th moment is conserved.
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The third term on the RHS of Eq. 4 represents the change in the population due to
the loss of individuals due to pair interactions such as a coalescence process. Thus,
c(ξ, s) is the coalescence rate between particles of type ξ and s. It is important to
remark that the upper limit of the integral is defined such that the coalescence process
can not produce particles exceeding the maximum physical allowable size ξmax. The
fourth term on the RHS represents the arrivals of new individuals due to the pair inter-
action, one particle of type ξ1 that coalesces with a particle of type ξ2 will produce
a particle of type ξ = ξ1 + ξ2. Depending on the property ξ chosen, the previous
relationships should be modified accordingly.

Further discussion about the meaning of each term in Eq. 4 regarding the modeling
of bubble flows can be found in Jakobsen et al. [10].

3 The least squares method

The least squares method (LSM) is a well established numerical method for solving
a wide range of mathematical problems, (e.g. [1,11,16,17]). The basic idea in the
LSM is to minimize the integral of the square of the residual over the computational
domain. In the case when the exact solutions are sufficiently smooth the convergence
rate is exponential. For time dependent problems, the space-time formulation, i.e. time
is treated as an additional dimension, allows high order accuracy both in space and in
time (e.g. [13,18]). In this way, space-time can be solved at once, or per time-step on
a space-time slab in a kind of semi-discrete formulation. A comprehensive discussion
of the LSM for a wide range of applications, and its mathematical properties have
been examined by Bochev [1]; Jiang [11]. Besides, an extended discussion about the
advantages of the time-space least squares can be found in Potanza and Reddy (e.g.
[18]). For application examples of the LSM to integral equations like the Fredholm,
Volterra or integro-differential equations the interested reader is referred to Delves
and Mohamed [3] and Hackbush [9]. In particular, the application of LSM to PBE was
previously discussed by Dorao and Jakobsen [5,6].

The Least-Squares formulation is based on the minimization of a norm-equivalent
functional. This consists in finding the minimizer of the residual in a certain norm.
The norm-equivalent functional is given by

J ( f ; g, f0) ≡ 1
2 ‖ L f − g ‖2

Y (�) + 1
2 ‖ B0 f − f0 ‖2

Y (�0)

with the norms defined like

‖ • ‖2
Y (�)= 〈•, •〉Y (�) = ∫

�
• • d�, (6)

‖ • ‖2
Y (�0)

= 〈•, •〉Y (�0) = ∫
�0

• • ds (7)

Based on variational analysis, the minimization statement is equivalent to:
Find f ∈ X (�) such that

lim
ε→0

d

dε
J ( f + ε v; g, f0) = 0 ∀v ∈ X (�) (8)
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where X (�) is the space of the admissible functions. Consequently, the necessary
condition can be written as:

Find f ∈ X (�) such that

A( f, v) = F(v) ∀v ∈ X (�) (9)

with

A( f, v) = 〈L f,Lv〉Y (�) + 〈B0 f,B0v〉Y (�0) (10)

F(v) = 〈g,Lv〉Y (�) + 〈 f0,B0v〉Y (�0) (11)

where A : X × X → R is a symmetric, continuous bilinear form, and F : X → R a
continuous linear form. Finally, the discretization statement consists in searching the
solution in a reduced subspace, i.e. fN (r, ξ) ∈ X N (�) ⊂ X (�). Hence, fN can be
expressed like

fN (ξ, t) =
N1∑

i=0

N2∑
j=0

fi j ϕi (ξ) ϕ j (t), with fi j = f (ξi , t j ) (12)

where ϕi (ξ) and ϕ j (t) are the one dimensional basis functions. These basis functions
consist of Lagrangian interpolants polynomials through the Gauss–Legendre (GL)
and Gauss–Lobatto–Legendre (GLL) collocation points, respectively. For example
the polynomial ϕ j (t) defined in the reference domain �̂ = [−1, 1] is given by

ϕ j (t) =
(ξ2 − 1)

d L N2(ξ)

dξ

N2(N2 + 1)L N2(ξ)(ξ − ξ j )
(13)

where the (N2 +1) GLL–points, ξ j , are the roots of the first derivative of the Legendre
polynomial of degree N2, extended with the boundary nodes [4]. Figure 1 shows an
example of the distribution of nodal GLL and GL points in the domain � and in the
initial boundary �.

Fig. 1 Nodal points for the
time-property discretization

Nodal points used for 
setting the initial condition

GLL nodal pointsξ

t

1N

2N GL 
nodal 
points

0Γ

Ω
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Defining the index l = i + j (N1 + 1) with 0 ≤ i ≤ N1 and 0 ≤ j ≤ N2 , and
N = (N1 +1)(N2 +1)−1, as it can be seen in Fig. 2, expression (12) can be written as

fN (x) =
N∑

l=0

fl �l(x), with fl = f (xl) (14)

with x = (ξ, t) and �l(x) = ϕ j (t) ϕi (ξ) a two-dimensional basis function defined
as the tensor product of two one-dimensional basis functions. Figure 3 shows one
example of one two-dimensional basis function �l(x).

Using the approximation (14) in expression (9), the following matrix system is
obtained

A f = F (15)

Fig. 2 The distribution of the
GLL–GL points, xi , in [−1, 1]2
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Fig. 3 One of the 16 basis functions �l (x) = ϕi j (ξ, t) in [−1, 1]2
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where the matrix A ∈ R
N×N and vectors f ,F ∈ R

N are defined like

[A]i j = A(� j ,�i ) = 〈L� j ,L�i 〉Y (�) + 〈B0� j ,B0�i 〉Y (�I ) (16)

[F ]i = F(�i ) = 〈g,L�i 〉Y (�) + 〈 f I ,B0�i 〉Y (�I ) (17)[
f
]

i = fi = f (xi ) (18)

with

〈L� j ,L�i 〉Y (�) =
∫ T

0

∫ ξmax

ξmin

L� j (ξ, t) L�i (ξ, t) dξ dt (19)

〈B0� j ,B0�i 〉Y (�0) =
∫ T

0
B0� j (ξ, t) B0�i (ξ, t) dξ (20)

〈g,L�i 〉Y (�) =
∫ T

0

∫ ξmax

ξmin

g(ξ, t) L�i (ξ, t) dξ dt (21)

〈 f0,B0�i 〉Y (�0) =
∫ T

0
f0(ξ) B0�i (ξ, 0) dξ (22)

The previous integral expressions can be approximated in an efficient way by using
numerical quadrature [4]. For example, the integral of a function b(ξ) in the reference
domain �̂ = [−1, 1] evaluated numerically using GL integration is given as

∫ 1

−1
b(ξ)dξ ≈

P∑
q=0

b(ξq) wq (23)

Generally, the same GL–roots are used for the evaluation of the integrals as for the
approximation of the solution, i.e. P = N1, because of simplicity and for the imple-
mentation aspects. The Gaussian quadrature based on the GL–roots is even exact when
the integrand b(ξ) is a polynomial of degree 2P − 1 or lower. Thus, it is possible to
determine a priori for a given problem the optimal order of P .

It is important to mention that the non-linear terms require a linearization step
before the application of the framework discussed in Dorao and Jakobsen [5], where
the successive approximation linearisation method was used.

3.1 Further extensions

The novel framework is not limited to the particular case discussed in this work where
the density function f (ξ, t) is only dependent on one particle property. The exten-
sion for considering more particle properties and/or spatial dependency is also pos-
sible using the same mathematical framework. Increasing the number of dimensions
requires that one increases the dimension of the space X N (�). Hence, approxima-
tion (12) should include the one-dimensional basis functions related to the considered
dimensions.
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4 Numerical example

In order to verify the spectral convergence of this framework, the method of manu-
factured solutions is used [15,20]. The method of manufactured solutions consists in
proposing an analytical solution, preferably one that is infinitely differentiable and
not trivially reproduced by the basis functions of the approximation, and the produced
residuals are simply treated as source terms that produce the desired or prescribed
solution. This source terms or residuals are referred to as the consistent forcing func-
tions.

The test case is defined like

b(ξ) = ξ2, h(ξ, ξ̃ ) = 1/ξ̃ , c(ξ, ξ̃ ) = 1

g(ξ, t) = 1

12
e−2−2t−2ξ

(
15et+2ξ + 3e2ξ ξ(−3 + 2ξ)

+ e2 (3ξ − 2ξ3) + 3e2+t (−1 − 6ξ − 2ξ2 + 4ξ3)
)

fexact(ξ, t) = ξ e−2ξ−t

where (ξ, t) ∈ � = [0, 1] × [0, T ].
The integration computations, expressions (19) to (22), required for getting the

final system and errors estimates are computed using a GL–GLL quadrature rule of
the same order as the used for the Lagrangian polynomials.

The solution is approximated on successive space-time strips of dimensions
�t = [0, 1] × �t . Within each space-time slab the problem is solved iteratively
until convergence is reached

|�R| ≤ tol, with �R =‖ R( f i
N ) ‖L2 − ‖ R( f i+1

N ) ‖L2 (24)

where tol = 10−14, f i
N and f i+1

N are the approximated solution in two successive
iterations. The residual ‖ R ‖L2 is in the L2–norm

‖ R ‖L2 =
(
‖ L fN − g ‖2

Y (�) + ‖ fN − f0 ‖2
Y (�0)

)1/2
(25)

In order to show how good the numerical solutions of the above problems are in com-
parison with the exact ones, the error over the total time-space domain � are computed
and measured in the L2–norm

‖ ε ‖2 =
(∫ T

0

∫ 1

0
( f (ξ, t) − fN (ξ, t))2 dξ dt

)1/2

(26)

where f (ξ, t) is the exact solution and fN (ξ, t) is the LSQ solution. In some practical
applications, the prediction of the moments is the main goal of the computations. For
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that reason, for showing how accurate the moments are computed, the error in the
weighted L1–norm is used

‖ εk(t) ‖1 = 100

⏐⏐⏐⏐µk(t) − µk,N (t)

µk(t)

⏐⏐⏐⏐ (27)

where µk(t) and µk,N (t) are the exact and numerical moments, respectively. It is noted
that the moments are defined as

µk(t) =
∫ 1

0
ξ k f (ξ, t) dξ (28)

Figure 4 shows the error and residual convergence in the L2–norm. As expected,
the exponential convergence rate is observed. In some engineering applications, the
accurate prediction of the moments is the main goal of the computations. For that
reason, in Fig. 5 the convergence error in the moments is plotted.
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Fig. 4 Error and Residual convergence in the L2–norm, with � = [0, 1]2 and �t = 1

Fig. 5 Moments error
convergence in the L1–norm,
with � = [0, 1]2 and �t = 1
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Fig. 6 Evolution of f (ξ, t) with N1 = 6, N2 = 4, � = [0, 1]2, �t = 0.1, ‖ R ‖2 = 6.0 × 10−6

Fig. 7 Evolution of the
normalized moments with
N1 = 6, N2 = 4, � = [0, 1]2,
�t = 0.1 and ‖ R ‖2 =
6.0 × 10−6
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In Fig. 6 the evolution of f (ξ, t) is plotted for the case that g(ξ, t) = 0, for which
no analytical solution is available. Besides, Fig. 7 shows the time evolution of the
normalized moments for the same case. In particular, the 0th moment is conserved.

5 Conclusions

A time-property least squares spectral method was presented for solving the popu-
lation balance equation including breakage and coalescence processes. The use of a
time-property approach allows us to increase the temporal accuracy or for a given
accuracy increase the time step reducing the final computational cost. Besides, if the
exact solution is sufficiently smooth, the convergence rate is exponential.

Further work is required for coupling such type of methods with the available
multifluid solvers.
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